Asymptotically symmetric spaces with hereditarily non-unique spreading models
نویسندگان
چکیده
منابع مشابه
On Asymptotically Symmetric Banach Spaces
A Banach space X is asymptotically symmetric (a.s.) if for some C <∞, for all m ∈ N, for all bounded sequences (xj)j=1 ⊆ X, 1 ≤ i ≤ m, for all permutations σ of {1, . . . ,m} and all ultrafilters U1, . . . ,Um on N, lim n1,U1 . . . lim nm,Um ∥∥∥∥ m ∑ i=1 xini ∥∥∥∥ ≤ C lim nσ(1),Uσ(1) . . . lim nσ(m),Uσ(m) ∥∥∥∥ m ∑
متن کامل00 5 on Asymptotically Symmetric Banach Spaces
A Banach space X is asymptotically symmetric (a.s.) if for some C < ∞, for all m ∈ N, for all bounded sequences (x i j)
متن کاملStrictly Singular Non-compact Operators on Hereditarily Indecomposable Banach Spaces
An example is given of a strictly singular non-compact operator on a Hereditarily Indecomposable, reflexive, asymptotic `1 Banach space. The construction of this operator relies on the existence of transfinite c0-spreading models in the dual of the space.
متن کاملHereditarily Homogeneous Generalized Topological Spaces
In this paper we study hereditarily homogeneous generalized topological spaces. Various properties of hereditarily homogeneous generalized topological spaces are discussed. We prove that a generalized topological space is hereditarily homogeneous if and only if every transposition of $X$ is a $mu$-homeomorphism on $X$.
متن کاملInterpolating Hereditarily Indecomposable Banach Spaces
A Banach space X is said to be Hereditarily Indecomposable (H.I.) if for any pair of closed subspaces Y , Z of X with Y ∩ Z = {0}, Y + Z is not a closed subspace. (Throughout this section by the term “subspace” we mean a closed infinite-dimensional subspace of X .) The H.I. spaces form a new and, as we believe, fundamental class of Banach spaces. The celebrated example of a Banach space with no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2020
ISSN: 0002-9939,1088-6826
DOI: 10.1090/proc/14855